Published in

IOP Publishing, Japanese Journal of Applied Physics, 8S(52), p. 08JN02, 2013

DOI: 10.7567/jjap.52.08jn02

Links

Tools

Export citation

Search in Google Scholar

Enhancement-Mode LaLuO3–AlGaN/GaN Metal–Insulator–Semiconductor High-Electron-Mobility Transistors Using Fluorine Plasma Ion Implantation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, enhancement-mode (E-mode) AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs) with high-κ LaLuO3 (LLO) gate dielectric were fabricated by deploying the CF4 plasma treatment technique in a gate-dielectric-first planar process. CF4 plasma treatment can shift the threshold voltage from -2.3 V [for depletion-mode (D-mode) LLO MIS-HEMTs] to 0.6 V (for E-mode LLO MIS-HEMTs). Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results suggest that fluorine ions could penetrate through the polycrystalline/amorphous LLO film and be implanted into the (Al)GaN barrier layer. The primary threshold voltage (V TH) shift mechanism of the E-mode LLO MIS-HEMTs is the negatively-charged fluorine ions in (Al)GaN, while fluorine atoms form chemical bonds with La/Lu atoms in the fluorinated LLO film. The E-mode LLO MIS-HEMTs exhibit a drive drain current density of 352 mA/mm at V GS = 2.5 V and a peak transconductance (G m) of ∼193 mS/mm. Significant suppression of current collapse and low dynamic ON-resistance are obtained in the E-mode LLO MIS-HEMTs under high-drain-bias switching conditions.