Published in

American Association of Immunologists, The Journal of Immunology, 10(181), p. 6820-6828, 2008

DOI: 10.4049/jimmunol.181.10.6820

Links

Tools

Export citation

Search in Google Scholar

The Host Environment Regulates the Function of CD8+ Graft-versus-Host-Reactive Effector Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have examined how the host environment influences the graft-vs-leukemia (GVL) response following transfer of donor T cells to allogeneic chimeras. Donor T cells induce significant GVL when administered in large numbers to established mixed chimeras (MC). However, when using limiting numbers of T cells, we found that late transfer to MC induced less GVL than did early transfer to freshly irradiated allogeneic recipients. Late donor T cell transfer to MC was associated with marked accumulation of anti-host CD8 cells within the spleen, but delayed kinetics of differentiation, reduced expression of effector molecules including IFN-gamma, impaired cytotoxicity, and higher rates of sustained apoptosis. Furthermore, in contrast to the spleen, we observed a significant delay in donor CD8 cell recruitment to the bone marrow, a key location for hematopoietic tumors. Increasing the numbers of T cells transferred to MC led to the enhancement of CTL activity and detectable increases in absolute numbers of IFN-gamma(+) cells without inducing graft-vs-host disease (GVHD). TLR-induced systemic inflammation accelerated differentiation of functional CTL in MC but was associated with severe GVHD. In the absence of inflammation, both recipient T and non-T cell populations impeded the full development of GVHD-inducing effector function. We conclude that per-cell deficits in the function of donor CD8 cells activated in MC may be overcome by transferring larger numbers of T cells without inducing GVHD.