Published in

Wiley, Evolution: International Journal of Organic Evolution, 11(66), p. 3321-3335, 2012

DOI: 10.1111/j.1558-5646.2012.01684.x

Links

Tools

Export citation

Search in Google Scholar

Dissecting the Genetic Architecture of F1hybrid Sterility in House Mice

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hybrid sterility as a postzygotic reproductive isolation mechanism has been studied for over 80 years, yet the first identifications of hybrid sterility genes in Drosophila and mouse are quite recent. To study the genetic architecture of F(1) hybrid sterility between young subspecies of house mouse Mus m. domesticus and M. m. musculus, we conducted QTL analysis of a backcross between inbred strains representing these two subspecies and probed the role of individual chromosomes in hybrid sterility using the intersubspecific chromosome substitution strains. We provide direct evidence that the asymmetry in male infertility between reciprocal crosses is conferred by the middle region of M. m. musculus Chr X, thus excluding other potential candidates such as Y, imprinted genes, and mitochondrial DNA. QTL analysis identified strong hybrid sterility loci on Chr 17 and Chr X and predicted a set of interchangeable autosomal loci, a subset of which is sufficient to activate the Dobzhansky-Muller incompatibility of the strong loci. Overall, our results indicate the oligogenic nature of F(1) hybrid sterility, which should be amenable to reconstruction by proper combination of chromosome substitution strains. Such a prefabricated model system should help to uncover the gene networks and molecular mechanisms underlying hybrid sterility.