Published in

American Chemical Society, The Journal of Physical Chemistry A, 17(115), p. 4406-4415, 2011

DOI: 10.1021/jp1095272

Links

Tools

Export citation

Search in Google Scholar

Fisher Information and Steric Effect: Study of the Internal Rotation Barrier of Ethane

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

On the basis of a density-based quantification of the steric effect [Liu, S. B. J. Chem. Phys.2007, 126, 244103], the origin of the internal rotation barrier between the eclipsed and staggered conformers of ethane is systematically investigated in this work from an information-theoretical point of view by using the Fisher information measure in conjugated spaces. Two kinds of computational approaches are considered in this work: adiabatic (with optimal structure) and vertical (with fixed geometry). The analyses are performed systematically by following, in each case, the conformeric path by changing the dihedral angle from 0 to 180° . This is calculated at the HF, MP2, B3LYP, and CCSD(T) levels of theory and with several basis sets. Selected descriptors of the densities are utilized to support the observations. Our results show that in the adiabatic case the eclipsed conformer possesses a larger steric repulsion than the staggered conformer, but in the vertical cases the staggered conformer retains a larger steric repulsion. Our results verify the plausibility for defining and computing the steric effect in the post-Hartree-Fock level of theory according to the scheme proposed by Liu.