Published in

Elsevier, Sedimentary Geology, 1-4(219), p. 58-76

DOI: 10.1016/j.sedgeo.2009.04.010

Links

Tools

Export citation

Search in Google Scholar

Vertically stacked Gilbert-type deltas of Ventimiglia (NW Italy): The Pliocene record of an overfilled Messinian incised valley

Journal article published in 2009 by Anna Breda ORCID, Donatella Mellere, Francesco Massari, Alessandra Asioli
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Overfilled incised valleys develop when the rate of sediment supply outpaces the rate of accommodation. An overfilled incised valley presents simple or compound valley-fill architecture, depending on the depth of the valley incision, compared with the height reached by the following sea-level rise. The Ventimiglia incised valley, exposed on the Ligurian coast, north-western Mediterranean margin, presents a spectacular example of compound incised-valley fill, developed in perennial “overfill” conditions. The valley was subaerially incised during the Messinian Salinity Crisis and rapidly flooded by the sea at the beginning of Pliocene, then filled by eleven coarse-grained Gilbert-type deltas during Early–Middle Pliocene time. The basal Messinian unconformity is locally paved with subaerial scree breccias and bioclastic shallowmarine sandstones, and blanketed by bathyal marls. These deposits record the lowstand, transgressive and early-highstand systems tracts of the first valley-fill sequence. The subsequent progradation of Gilbert-type deltas occurred in four stages, or depositional sequences, separated by transgressive marine-marl intervals. Within each depositional sequence, the deltaic bodies display offlapping architecture, recording falling shoreline trajectory, downward shifts in facies, and overall forced regression. The water depth and accommodation in the inundated coastal valley was gradually decreasing with time. The reduced accommodation allowed the youngest deltas to prograde out to the shelf edge, triggering mass collapses and subsequent filling into the newly created slump scars. Some of the deltas probably acted as “canyon perched deltas” and supplied sediment to the deep-water slope and floor of the Ligurian Basin. The vertical stacking of Gilbert-type deltas is usually attributed, in tectonically active basins, to fault-related subsidence pulses. In Ventimiglia, the accommodation was created by high-frequency eustatic sea-level rises that, probably accompanied by climate controlled reductions in sediment supply, temporarily outpaced uplift, leading to the development of multiple cycles of infill.