Published in

American Association of Neurological Surgeons, Journal of Neurosurgery, 3(115), p. 561-569, 2011

DOI: 10.3171/2011.4.jns101920

Links

Tools

Export citation

Search in Google Scholar

Preliminary evaluation of a novel intraparenchymal capacitive intracranial pressure monitor

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Object Intracranial pressure (ICP) monitors are currently based on fluid-filled, strain gauge, or fiberoptic technology. Capacitive sensors have minimal zero drift and energy requirements, allowing long-term implantation and telemetric interrogation; their application to neurosurgery has only occasionally been reported. The aim of this study was to undertake a preliminary in vitro and in vivo evaluation of a capacitive telemetric implantable ICP monitor. Methods Four devices were tested in air- and saline-filled pressure chambers; long-term capacitance-pressure curves were obtained. Devices implanted in a gel phantom and in a piglet were placed in a 3-T MR unit to evaluate MR compatibility. Four devices were implanted in a piglet neonatal hydrocephalus model; output was compared with ICP obtained through fluid-filled transduction and a strain-gauge ICP monitor. Results The capacitance-pressure relationship was constant over 4 weeks, suggesting minimal zero drift during this period. There were no temperature changes around the monitor. Signal loss at the sensor was minimal in both the phantom and the piglet. Over 114,000 measurements were obtained; the difference between mean capacitive ICP and fluid-transduced ICP was 1.8 ± 1.42 mm Hg. The correlation between ICP from the capacitive sensor and fluid-filled transducer (r = 0.97, p < 0.0001) or strain-gauge monitor (r = 0.99, p < 0.0001) was excellent. In vivo monitoring was restricted to 48 hours due to problems with robustness in the clinical environment. Conclusions This preliminary study demonstrates minimal long-term zero drift in vitro, good MR compatibility, and good correlation with other methods of ICP monitoring in vivo in the short term. Further long-term in vivo study is required.