Published in

Elsevier, Earth and Planetary Science Letters, 1-2(257), p. 215-230

DOI: 10.1016/j.epsl.2007.02.033

Links

Tools

Export citation

Search in Google Scholar

Deglacial changes in dust flux in the eastern equatorial Pacific

Journal article published in 2007 by D. McGee, F. Marcantonio, J. Lynch Stieglitz ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Atmospheric dust levels may play important roles in feedbacks linking continental source areas, tropical convection, marine productivity, and global climate. These feedbacks appear to be particularly significant in the tropical Pacific, where variations in local convection and productivity have been demonstrated to have impacts on climate at higher latitudes. Modeling of past dust levels and related feedbacks has been limited, however, by a paucity of observational data. In this study we present a temporal and spatial survey of dust fluxes to the eastern equatorial Pacific over the past 30 kyr. Glacial and Holocene fluxes of 232Th, a proxy for continental material, were calculated by normalization to 230Th from a north–south transect of cores along 110°W between 3°S and 7°N (ODP sites 848–853). Fluxes were 30–100% higher during the last glacial, suggesting increased dustiness in both hemispheres during the glacial period. In both time periods, dust fluxes decrease towards the south, reflecting scavenging of Northern Hemisphere dust by precipitation at the ITCZ. The Holocene meridional dust flux gradient between 7°N and 3°S is characterized by a steep drop in dust levels at the southern edge of the modern range of the ITCZ, while the gradient is shallower and more nearly linear during the last glacial. This change may indicate that the glacial ITCZ in this region was a less effective barrier to inter-hemispheric dust transport, most likely due to a decrease in convective intensity and precipitation during the last glacial; alternatively, the change in gradient may be explained by increased variability in the location of the glacial ITCZ. Our data do not appear to require a mean southerly displacement of the glacial ITCZ, as suggested by the results of other studies.