Published in

European Respiratory Society, European Respiratory Journal, 3(22), p. 457-461

DOI: 10.1183/09031936.03.00052002

Links

Tools

Export citation

Search in Google Scholar

Xanthine oxidase inhibition reduces reactive nitrogen species production in COPD airways

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Reactive nitrogen species (RNS) have been reported to be involved in the inflammatory process in chronic obstructive pulmonary disease (COPD). However, there are no studies on the modulation of RNS in COPD. It was hypothesised that inhibition of xanthine oxidase (XO) might decrease RNS production in COPD airways through the suppression of superoxide anion production. Ten COPD and six healthy subjects participated in the study. The XO inhibitor allopurinol (300 mg x day(-1) p.o. for 4 weeks) was administered to COPD patients. RNS production in the airway was assessed by 3-nitrotyrosine immunoreactivity and enzymic activity of XO in induced sputum as well as by exhaled nitric oxide (eNO) concentration. XO activity in the airway was significantly elevated in COPD compared with healthy subjects. Allopurinol administration to COPD subjects significantly decreased XO activity and nitrotyrosine formation. In contrast, eNO concentration was significantly increased by allopurinol administration. These results suggest that oral administration of the xanthine oxidase inhibitor allopurinol reduces airway reactive nitrogen species production in chronic obstructive pulmonary disease subjects. This intervention may be useful in the future management of chronic obstructive pulmonary disease.