Published in

Wiley Open Access, Ecosphere, 2(3), p. art19, 2012

DOI: 10.1890/es11-00287.1

Links

Tools

Export citation

Search in Google Scholar

Seasonal patterns in immune indices reflect microbial loads on birds but not microbes in the wider environment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Documenting patterns in immune function is a first step to understanding immune variation, but to comprehend causes and consequences, antigen and parasite exposure that may drive such variation must be determined. We measured host-independent microbial exposure in five species of larks (Alaudidae) in the Arabian Desert by sampling ambient air for culturable microbes during late spring and winter, two periods with contrasting environmental conditions. We developed a novel technique to assay densities of microbes shed from birds, and we quantified four indices of constitutive innate immunity. Birds shed significantly more microbes during spring than winter, and all immune indices except one were also significantly higher during spring. In contrast, concentrations of airborne environmental microbes were higher in winter. Among all birds in both seasons, lysis titers were positively correlated with total densities of microbes shed from birds, suggesting that immune defenses are directed towards the microbes that birds carry, rather than microbes in the wider environment. Our findings highlight the relevance of quantifying non-specific immune challenges in ecological immunology studies, and reinforce the importance of both host-dependent and host-independent measures of antigenic pressure for understanding immune variation.