Published in

IOP Publishing, Journal of Physics D: Applied Physics, 6(42), p. 065504, 2009

DOI: 10.1088/0022-3727/42/6/065504

Links

Tools

Export citation

Search in Google Scholar

Thermal and gasdynamic analysis of ablation of poly(methyl methacrylate) by pulsed IR laser irradiation under conditions of nanoparticle formation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present comprehensive experimental and theoretical studies of poly(methyl methacrylate) (PMMA) ablation by single pulses of 9.17 µm laser radiation in a wide range of fluences. Ablation was carried out in a quartz cell through which nitrogen under atmospheric pressure was pumped. The composition of the ablation products was analysed with the use of an automatic diffusion battery. Both the irradiated surface and the substrate with the deposited ablation products were examined by transmission electron microscopy. Different aspects and stages of ablation have been investigated: laser heating and vaporization of the PMMA surface, mechanisms of ablation, dynamics of the laser-induced plume, nanoparticle formation in the plume and/or ejection from the irradiated surface. It has been found that the size distribution of nanoparticles formed during ablation changes its form from a single peak to a bimodal shape with increasing laser fluence. The transformation of the size distribution is analysed with the help of thermal and gasdynamic modelling which gives a basis for insight into the mechanisms and dynamics of ablation.