Published in

American Chemical Society, Industrial & Engineering Chemistry Research, 2(49), p. 572-577, 2009

DOI: 10.1021/ie900953z

Links

Tools

Export citation

Search in Google Scholar

Reinforcing and Toughening Effects of Bamboo Pulp Fiber on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Fiber Composites

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites were melt-compounded and injection-molded. Tensile, impact and dynamic mechanical properties of the composites were studied. In contrast to many other short natural fiber reinforced biocomposites which demonstrate decreased strain-at-break, impact toughness and tensile strength, the PHBV/bamboo pulp fiber composites displayed increased tensile strength and impact toughness, and maintained/increased strain-at-break. Microscopic study of the fracture surfaces revealed extensive fiber pullout in both tensile and impact tests. The fiber pullout suggests insufficient interfacial adhesion between the fiber and the matrix. The pullout process in the impact testing dissipated a significant amount of energy and hence substantially improved the impact toughness of the composites. With the improved interfacial adhesion provided by coupling agent polymeric diphenylmethane diisocyanate (pMDI), the strength and modulus of the composites were further increased. However, the toughness was decreased due to the inhibition of the fiber pullout. An acoustic emission test revealed a significantly different process of structural change for the composites with/without pMDI during tension test.