Published in

Springer, Biochemistry (Moscow), 12(79), p. 1412-1422, 2014

DOI: 10.1134/s0006297914120177

Links

Tools

Export citation

Search in Google Scholar

Mouse Lymphomyeloid Cells Can Function with Significantly Decreased Expression Levels of Cytochrome c

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cytochrome c is an indispensable electron carrier in the mitochondrial respiratory chain and also an important mediator of the internal pathway triggering apoptosis. Mice with a complete deficiency of the Cycs gene encoding the somatic cytochrome c die during the embryogenesis. Using the technology of LoxP-cre-dependent tissue-specific recombination, we obtained some mouse strains with significantly reduced expression of cytochrome c in certain cell types ("conditional genetic knockdown"). This knockdown was achieved by abrogation of the normal splicing of the Cycs locus pre-mRNA due to an additional acceptor site inside the stop-cassette neo(r). Previously, we observed embryonic lethality in homozygous mice with the same knockdown of cytochrome c in all cells of the organism. In the present work we studied two novel mouse strains with conditional knockdown of the Cycs gene in T lymphocytes and macrophages. Somewhat surprisingly, the mice of these two strains under normal conditions were not phenotypically different from the wild-type mice, either on the whole organism level or on the level of activity of individual target cells. Thus, the amount of cytochrome c in lymphomyeloid cells does not affect their development and normal functioning.