Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, ACS Macro Letters, 10(2), p. 912-917, 2013

DOI: 10.1021/mz4004375

Links

Tools

Export citation

Search in Google Scholar

Selective Postmodification of Copolymer Backbones Bearing Different Activated Esters with Disparate Reactivities

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this communication, we report an easy method for introducing functional groups into polymer structures by successively reacting two different activated ester functionalities (pentafluorophenyl (PFP) ester and azlactone (AZ)) with different functional amine compounds. By exploiting the difference in reactivity of the two activated esters (PFP and AZ) toward different amino compounds, we demonstrate, for the first time, a selective modification of the different activated ester groups, thereby introducing functional groups to the polymer backbone in a controlled manner. Statistical and block copolymers of vinyl dimethyl azlactone (VDM) and pentafluorophenyl acrylate (PFPA), i.e.,(p(VDM-stat-PFPA)) and (p(VDM-block-PFPA)), were prepared using reversible addition fragmentation transfer (RAFT) polymerization and subsequently modified using a library of amino compounds, yielding macromolecules with bespoke functionality. In additional work, the functional macromolecules were self-assembled into nanoparticles.