Published in

Taylor and Francis Group, Journal of Biomolecular Structure and Dynamics, 1(33), p. 104-120, 2013

DOI: 10.1080/07391102.2013.855142

Links

Tools

Export citation

Search in Google Scholar

Interface dynamics explain assembly dependency of influenza neuraminidase catalytic activity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Influenza virus neuraminidase (iNA) is a homotetrameric surface protein of the influenza virus and an established target for antiviral drugs. In contrast to neuraminidases (NAs) of other biological systems (non-iNAs), enzymatic activity of iNA is only observed in a quaternary assembly and iNA needs the tetramerization to mediate enzymatic activity. Obviously, differences on a molecular level between iNA and non-iNAs are responsible for this intriguing observation. Comparison between protein structures and multiple sequence alignment allow the identification of differences in amino acid composition in crucial regions of the enzyme, such as next to the conserved D151 and the 150-loop. These differences in amino acid sequence and protein tetramerization are likely to alter the dynamics of the system. Therefore, we performed molecular dynamics simulations to investigate differences in the molecular flexibility of monomers, dimers, and tetramers of iNAs of subtype N1 (avian 2004, pandemic 1918 and pandemic 2009 iNA) and as comparison the non-iNA monomer from Clostridium perfringens. We show that conformational transitions of iNA are crucially influenced by its assembly state. The protein–protein interface induces a complex hydrogen-bonding network between the 110-helix and the 150-loop, which consequently stabilizes the structural arrangement of the binding site. Therefore, we claim that these altered dynamics are responsible for the dependence of iNA’s catalytic activity on the tetrameric assembly. Only the tetramerization-induced balance between stabilization and altered local flexibility in the binding site provides the appropriate arrangement of key residues for iNA’s catalytic activity.