Dissemin is shutting down on January 1st, 2025

Published in

Frontiers Media, Frontiers in Immunology, (6), 2015

DOI: 10.3389/fimmu.2015.00505

Links

Tools

Export citation

Search in Google Scholar

Radio-Immunotherapy-Induced Immunogenic Cancer Cells as Basis for Induction of Systemic Anti-Tumor Immune Responses – Pre-Clinical Evidence and Ongoing Clinical Applications

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Radiotherapy (RT) primarily aims to locally destroy the tumor via the induction of DNA damage in the tumor cells. However, the so-called abscopal, namely systemic and immune–mediated, effects of RT move over more and more in the focus of scientists and clinicians since combinations of local irradiation with immune therapy have been demonstrated to induce anti-tumor immunity. We here summarize changes of the phenotype and microenvironment of tumor cells after exposure to irradiation, chemotherapeutic agents, and immune modulating agents rendering the tumor more immunogenic. The impact of therapy-modified tumor cells and damage-associated molecular patterns on local and systemic control of the primary tumor, recurrent tumors, and metastases will be outlined. Finally, clinical studies affirming the bench-side findings of interactions and synergies of radiation therapy and immunotherapy will be discussed. Focus is set on combination of radio(chemo)therapy (RCT) with immune checkpoint inhibitors, growth factor inhibitors, and chimeric antigen receptor T-cell therapy. Well-deliberated combination of RCT with selected immune therapies and growth factor inhibitors bear the great potential to further improve anti-cancer therapies.