Frontiers Media, Frontiers in Psychology, (3)
Full text: Download
Humans use kinematic temporal and spatial information from the environment to infer the causal dynamics (e.g., force) of an event. We hypothesize that the basis for these inferences are malleable and modulated by contextual temporal and spatial information. Specifically, the present research investigates whether the extent of a person's ongoing experience with direct causal events (e.g., temporally contiguous and spatially continuous) alters their use of time and space in judgments of causality. Participants made inferences of causality on animated launching events depicting a blue ball colliding with and then "launching" a red ball. We parametrically manipulated temporal contiguity and spatial continuity by varying the duration of contact between the balls and the angle of the second ball's movement. We manipulated participants' level of exposure to direct causal events (i.e., events with no delay or angle change) between experiments (Experiment 1: 2%, Experiment 2: 25%, Experiment 3: 75%). We found that participants adjust the temporal and spatial parameters they use to judge causality to accommodate the context in which they apprehended launching events. Participants became more conservative in their use of temporal and spatial parameters to judge causality as their exposure to direct causal events increased. People use time and space flexibly to infer causality based on their ongoing experiences. Such flexibility in making causal inferences may have adaptive significance.