Materials Research Society, Materials Research Society Symposium Proceedings, (1569), p. 39-44, 2013
DOI: 10.1557/opl.2013.797
Full text: Download
ABSTRACTNitric oxide (NO) release can promote healthy tissue regeneration. A PEG-fibrinogen adhesive hydrogel that would allow for inducible NO release was created with mechanical properties that could be tailored to specific applications and tissue types. PEG (4-arm)-fibrinogen hydrogels of varying ratios were derivatized with S-nitroso-N-acetyl-D, L-penicillamine (SNAP)-thiolactone to create an active NO donor material. Controlled release from gels was established using light as the activating source, although temperature, pH, and external mechanical loading are also means to induce active NO release. Gels with varying ratios of fibrinogen to PEG were made, derivatized, and tested. Gels below a ratio of 1.5:1 (fibrinogen:PEG) did not gel, while at ratio of 1.5:1 gelation occurs and NO release can be induced. Interestingly, the release from 1.5:1 gels was significantly lower compared to 2:1 and 3:1 gel formulations. Rheometric data show that lower ratio gels are more elastic than viscous. Derivatized gels exhibited linear elastic moduli, behaving more like other more synthetic hydrogels. Swelling data indicates that as the ratio of fibrinogen to PEG increases the swelling ratio decreases, likely due to the hydrophobic nature of the NO donor. Cells remain viable on both derivatized and non-derivatized gels.