Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Chemistry - A European Journal, 29(16), p. 8757-8761, 2010

DOI: 10.1002/chem.201000264

Links

Tools

Export citation

Search in Google Scholar

Sonochemical Preparation of Hierarchical ZnO Hollow Spheres for Efficient Dye‐Sensitized Solar Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hierarchical ZnO hollow spheres (400-500 nm in diameter) consisting of ZnO nanoparticles with a diameter of approximately 15 nm have been successfully prepared by a facile and rapid sonochemical process. The formation of hierarchical ZnO hollow spheres is attributed to the oriented attachment and subsequent Ostwald ripening process according to time-dependent experiments. The as-prepared ZnO hollow spheres are used as a photoanode in dye-sensitized solar cells and exhibit a highly efficient power conversion efficiency of 4.33%, with a short-circuit current density of 9.56 mA cm(-2), an open-circuit voltage of 730 mV, and a fill factor of 0.62 under AM 1.5 G one sun (100 mW cm(-2)) illumination. Moreover, the photovoltaic performance (4.33%) using the hierarchical ZnO hollow spheres is 38.8% better than that of a ZnO nanoparticle photoelectrode (3.12%), which is mainly attributed to the efficient light scattering for the former.