Published in

American Chemical Society, Macromolecules, 10(43), p. 4698-4707, 2010

DOI: 10.1021/ma902247y

Links

Tools

Export citation

Search in Google Scholar

A PALS Contribution to the Supramolecular Structure of Poly(l-lactide)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Positron annihilation lifetime spectroscopy (PALS) was conducted to follow the evolution of free volume during crystallization of PLLA at 100 °C. A finite lifetime distribution of three components was used to fit the PALS spectra. The analysis of the longest lifetime component (τ3) indicates that the free volume distribution evolves during crystallization by increasing the number of holes yet decreasing their size; moreover, the free volume fraction increased during crystallization. Following the evolution of the shortest components a correlation was found with crystalline and amorphous phase contents present in PLLA. The first component (τ1) was assigned to positron annihilation in occupied zones of the crystalline phase whereas the second component (τ2) was attributed to annihilation by different amorphous arrangements. A model for the supramolecular arrangement of PLLA chains was devised in terms of free volume enlargement for annealed samples. According to this model transformations occur in mobile amorphous phase (MAP) and rigid amorphous phase (RAP) with PLLA chains evolving from folded or coil conformations in the as-quenched samples containing uniquely MAP to opener (more extended) conformations in samples containing larger RAP and crystalline fractions. The proposed model provides a rational for the understanding of some unexpected effects associated with free volume that have been observed in several semicrystalline polymer systems, i.e., the lowering of density during crystallization (dedensification), the acceleration of polymer chains dynamics around the Tg (dynamic fragility) due to a rigid amorphous phase confined by crystallites, and also the gas permeability behavior in terms of solubility and diffusion coefficients.