Hindawi, Journal of Oncology, (2015), p. 1-11, 2015
DOI: 10.1155/2015/698760
Full text: Download
Biological systems are characterized by their potential for dynamic adaptation. One of the challenges for systems biology approaches is their contribution towards the understanding of the dynamics of a growing cell population. Conceptualizing these dynamics in tumor models could help us understand the steps leading to the initiation of the disease and its progression. In vitro models are useful in answering this question by providing information over the spatiotemporal nature of such dynamics. In the present work, we used physical quantities such as growth rate, velocity, and acceleration for the cellular proliferation and identified the fractal structures in tumor cell proliferation dynamics. We provide evidence that the rate of cellular proliferation is of nonlinear nature and exhibits oscillatory behavior. We also calculated the fractal dimensions of our cellular system. Our results show that the temporal transitions from one state to the other also follow nonlinear dynamics. Furthermore, we calculated self-similarity in cellular proliferation, providing the basis for further investigation in this topic. Such systems biology approaches are very useful in understanding the nature of cellular proliferation and growth. From a clinical point of view, our results may be applicable not only to primary tumors but also to tumor metastases.