Published in

Springer, The European Physical Journal E, 3(34), 2011

DOI: 10.1140/epje/i2011-11025-8

Links

Tools

Export citation

Search in Google Scholar

The diffusion constant of a labeled protein sliding along DNA

Journal article published in 2011 by I. Bonnet ORCID, P. Desbiolles
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Long ago inferred by biochemists, the linear diffusion of proteins along DNA has recently been observed at a single-molecule level using fluorescence microscopy. This imaging technique requires labeling the protein of interest with a fluorophore, usually an organic nanosized dye that is not supposed to impact the dynamics of the protein. Yet individual proteins can also be tracked using much larger labels, like quantum dots or beads. We investigate here the impact of such a large label on the protein diffusion along DNA. Solving a Fokker-Planck equation, we estimate the diffusion constant of a protein-label complex diffusing in a periodic potential that mimics the DNA-protein interaction, the link between the protein and the label being modeled as a Hookean spring. Our results indicate that the diffusion constant can generally be calculated by considering that the motion of the protein in the DNA potential is decoupled from the Brownian motion of the label. Our conclusions are in good agreement with the experimental results we obtained with the restriction enzyme EcoRV, assuming a rotation-coupled diffusion of the enzyme along DNA.