Published in

American Geophysical Union, Journal of Geophysical Research, C10(115), 2010

DOI: 10.1029/2009jc006087

Links

Tools

Export citation

Search in Google Scholar

Coastal and mesoscale dynamics characterization using altimetry and gliders: A case study in the Balearic Sea

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

1] Dynamics along the continental slopes are difficult to observe given the wide spectrum of temporal and spatial variability of physical processes which occur (coastal currents, meanders, eddies, etc.). Studying such complex dynamics requires the development of synergic approaches that use integrated observing systems. In this context, we present the results of an observational program conducted in the Balearic Sea combining coastal gliders and altimetry. The objectives of this experiment are to study regional dynamics using new technologies, such as gliders, in synergy with satellite altimetry and to investigate the limitations and potential improvement to altimetric data sets in the coastal zone. In this regard, new methodologies have been developed to compute consistent altimetric and glider velocities, and a novel technique to estimate absolute glider velocities, combining surface glider geostrophic velocities with integrated currents estimated from the glider GPS positioning, has been applied. In addition, the altimetric velocity computation has been improved, especially in the coastal zone, using high‐frequency along‐track sampling associated with new filtering and editing techniques. This approach proves efficient for homogenizing the physical contents of altimetry and glider surface currents (percentage of standard deviation explained is >40) and characterizing regional dynamics in the Balearic Sea through a combined analysis of a high‐resolution observing system, such as the appearance of anomalous intense mesoscale features missing in the classical circulation scheme of the Balearic Sea.