Published in

American Physical Society, Physical review B, 8(89)

DOI: 10.1103/physrevb.89.085103

Links

Tools

Export citation

Search in Google Scholar

Self-consistent determination of HubbardUfor explaining the anomalous magnetism of the Gd13cluster

Journal article published in 2014 by Kun Tao, Jian Zhou, Qiang Sun ORCID, Qian Wang, V. S. Stepanyuk, Puru Jena
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The effective on-site Coulomb interaction (Hubbard U) is an important parameter for studying strongly correlated systems. While U is determined empirically by fitting to bulk values, its value for a cluster with a finite number of atoms remains uncertain. Here, we choose Gd13 as a prototypical example of a strongly correlated cluster. Contrary to the well-known results in transition-metal clusters where magnetic moments of clusters are larger than their bulk, in Gd13 cluster the magnetic moment is smaller than its bulk value. Using density functional theory and the linear response approach, we determine U self-consistently for the cluster and apply it to explain the anomalous magnetic properties of Gd13. We demonstrate that the interaction between core and shell atoms of the Gd13 cluster strongly depends on the Hubbard U. For U =0 eV magnetism is governed by a direct f-f electron interaction between core and shell atoms, while for U =5.5 eV it is the indirect Ruderman-Kittel-Kasuya-Yosida interaction that prevails. We also demonstrate that the noncollinear spin arrangement of each atom in the cluster strongly depends on the Hubbard U. Monte Carlo calculations further confirm that magnetic moments decrease with temperature, thus addressing a long-standing disagreement in experimental results.