Published in

Elsevier, Journal of Biological Chemistry, 36(287), p. 30368-30375, 2012

DOI: 10.1074/jbc.m112.375618

Links

Tools

Export citation

Search in Google Scholar

Brain-selective Kinase 2 (BRSK2) Phosphorylation on PCTAIRE1 Negatively Regulates Glucose-stimulated Insulin Secretion in Pancreatic β-Cells*

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Brain-selective kinase 2 (BRSK2) has been shown to play an essential role in neuronal polarization. In the present study, we show that BRSK2 is also abundantly expressed in pancreatic islets and MIN6 β-cell line. Yeast two-hybrid screening, GST fusion protein pull-down, and co-immunoprecipitation assays reveal that BRSK2 interacts with CDK-related protein kinase PCTAIRE1, a kinase involved in neurite outgrowth and neurotransmitter release. In MIN6 cells, BRSK2 co-localizes with PCTAIRE1 in the cytoplasm and phosphorylates one of its serine residues, Ser-12. Phosphorylation of PCTAIRE1 by BRSK2 reduces glucose-stimulated insulin secretion (GSIS) in MIN6 cells. Conversely, knockdown of BRSK2 by siRNA increases serum insulin levels in mice. Our results reveal a novel function of BRSK2 in the regulation of GSIS in β-cells via a PCTAIRE1-dependent mechanism and suggest that BRSK2 is an attractive target for developing novel diabetic drugs.