Published in

American Chemical Society, Nano Letters, 8(14), p. 4486-4492, 2014

DOI: 10.1021/nl501452s

Links

Tools

Export citation

Search in Google Scholar

Three-Dimensional Bicomponent Supramolecular Nanoporous Self-Assembly on a Hybrid All-Carbon Atomically Flat and Transparent Platform

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Molecular self-assembly is a versatile nanofabrication technique with atomic precision en route to molecule-based electronic components and devices. Here, we demonstrate a three-dimensional, bicomponent supramolecular network architecture on an all-carbon sp(2)-sp(3) transparent platform. The substrate consists of hydrogenated diamond decorated with a monolayer graphene sheet. The pertaining bilayer assembly of a melamine-naphthalenetetracarboxylic diimide supramolecular network exhibiting a nanoporous honeycomb structure is explored via scanning tunneling microscopy initially at the solution-highly oriented pyrolytic graphite interface. On both graphene-terminated copper and an atomically flat graphene/diamond hybrid substrate, an assembly protocol is demonstrated yielding similar supramolecular networks with long-range order. Our results suggest that hybrid platforms, (supramolecular) chemistry and thermodynamic growth protocols can be merged for in situ molecular device fabrication.