Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 9(119), p. 3727-3742, 2015

DOI: 10.1021/jp512997z

Links

Tools

Export citation

Search in Google Scholar

Guided Ion Beam and Computational Studies of the Decomposition of a Model Thiourea Protein Cross-Linker

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The dissociation of protonated d3-methyl thiourea-4-butyric acid methyl amide (1), a model of thiourea-based protein cross-linking compounds, is examined both experimentally and computationally. Using a guided ion beam tandem mass spectrometer (GIBMS), the collision-induced dissociation (CID) of [1+H]+ with Xe is examined as a function of collision energy. Analysis of the kinetic energy-dependent CID cross sections provides the 0 K barriers for four primary and four secondary dissociation pathways, after accounting for competition between channels, sequential dissociations, unimolecular decay rates, internal energy of reactant ions, and multiple ion-neutral collisions. Computations are used to explore the pathways for the various processes and elucidation of their rate-limiting transition states. These results indicate that dissociation is initiated by migration of the excess proton from sulfur to one of three nitrogen atoms in 1, similar to the "mobile proton" model of peptide fragmentation. The computational energies for the rate-limiting transition states are generally in good agreement with the experimentally derived threshold energies, with MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) results being particularly favorable. This good comparison validates the mechanisms explored theoretically and allows identification of the structures of the various product ions and neutrals.