Published in

Elsevier, Organic Electronics, 2-3(8), p. 241-248

DOI: 10.1016/j.orgel.2006.07.006

Links

Tools

Export citation

Search in Google Scholar

Induced Density of States model for weakly-interacting organic semiconductor interfaces

Journal article published in 2007 by H. Vázquez ORCID, F. Flores, A. Kahn
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Induced Density of Interface States model is revisited and discussed for weakly-interacting organic semiconductor junctions. First, unreactive ‘ideal’ Au/organic interfaces are analyzed and described as a function of the organic Charge Neutrality Level (CNL) and the slope parameter SMO specific to the case of Au: these values are similar, though not necessarily equal, to those obtained from a fit to reactive and unreactive metal/organic interfaces. Then, using the information provided by the Au/organic cases, we obtain the organic/organic screening parameters and calculate molecular level offsets without any adjustable parameter. The good agreement found between our theoretical results and experimental data for weakly-interacting metal/organic and organic/organic interfaces shows that our analysis in terms of the organic CNL and the corresponding (SMO or SOO) slope parameter provides a consistent and predictive description of the energy level alignment at these interfaces.