Dissemin is shutting down on January 1st, 2025

Published in

American Meteorological Society, Bulletin of the American Meteorological Society, 7(97), p. 1149-1158, 2016

DOI: 10.1175/bams-d-15-00010.1

Links

Tools

Export citation

Search in Google Scholar

A minimum standard for publishing computational results in the weather and climate sciences

Journal article published in 2015 by Damien Irving ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Weather and climate science has undergone a computational revolution in recent decades, to the point where all modern research relies heavily on software and code. Despite this profound change in the research methods employed by weather and climate scientists, the reporting of computational results has changed very little in relevant academic journals. This lag has led to something of a reproducibility crisis, whereby it is impossible to replicate and verify most of today’s published computational results. While it is tempting to simply decry the slow response of journals and funding agencies in the face of this crisis, there are very few examples of reproducible weather and climate research upon which to base new communication standards. In an attempt to address this deficiency, this essay describes a procedure for reporting computational results that was employed in a recent Journal of Climate paper. The procedure was developed to be consistent with recommended computational best practices and seeks to minimize the time burden on authors, which has been identified as the most important barrier to publishing code. It should provide a starting point for weather and climate scientists looking to publish reproducible research, and it is proposed that journals could adopt the procedure as a minimum standard.