Published in

The Company of Biologists, Journal of Experimental Biology, 19(212), p. 3156-3163, 2009

DOI: 10.1242/jeb.029249

Links

Tools

Export citation

Search in Google Scholar

Oxygen tension correlates with regional blood flow in obstructed rat kidney

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

As renal tissue oxygen tension (P(O(2))) is determined by the balance between oxygen supply and consumption, direct tissue P(O(2)) measurements are essential when evaluating the presence of hypoxia. The present study aimed at evaluating invasively and continuously the renal medullary and cortical tissue P(O(2)) by novel fibre-optic probes in rats subjected to acute unilateral ureteral obstruction (AUUO). In parallel, regional blood flow measurements were obtained by MRI to investigate the relationship between regional blood flow and tissue oxygen tension. The abundance of transport proteins was determined by immunoblotting. In the obstructed kidney, AUUO caused a prompt decrease in medullary tissue P(O(2)) to 60% of baseline level whereas cortical tissue P(O(2)) was unchanged. By contrast, tissue P(O(2)) slightly increased in the non-obstructed kidney. These changes developed during the first 30 min after AUUO and persisted for the 3 h observation period. Medullary blood flow declined 1.5-2 h after induction of AUUO to 61% of baseline level in the obstructed kidney. By contrast, cortical blood flow increased to 108% of baseline level in the non-obstructed kidney. Finally, the abundance of phosphorylated aquaporin 2 decreased significantly in the obstructed kidney medulla, but increased in the obstructed kidney cortex. The Na(+)/K(+)-ATPase abundance increased in the obstructed kidney medulla whereas the Na(+)/K(+)/2Cl(-) co-transporter abundance remained unchanged in the obstructed kidney. In conclusion, measurements of regional blood flow reflect tissue P(O(2)) changes during AUUO suggesting that reduced regional blood flow is a predictor of local hypoxia. Furthermore, the abundance of major transport protein is independent of tissue P(O(2)).