Published in

Wiley, Journal of the American Ceramic Society, 2(96), p. 567-576, 2012

DOI: 10.1111/jace.12092

Links

Tools

Export citation

Search in Google Scholar

Compressive Behavior of Ti3AlC2and Ti3Al0.8Sn0.2C2MAX Phases at Room Temperature

Journal article published in 2012 by G.-P. Bei ORCID, G. Laplanche, V. Gauthier-Brunet, J. Bonneville, S. Dubois
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, we report on the compressive behavior of Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX phases at room temperature. We found that these two phases could be classified as Kinking Nonlinear Elastic (KNE) solids. The cyclic compressive stress–strain loops for Ti3AlC2 and Ti3Al0.8Sn0.2C2 are typical hysteretic and fully reversible. At failure, both compositions fracture in shear with maximum stresses of 545 MPa for Ti3AlC2 and 839 MPa for Ti3Al0.8Sn0.2C2. Consequently, the macroshear stresses for failure, τc, are 185 MPa and 242 MPa for Ti3AlC2 and Ti3Al0.8Sn0.2C2, respectively. In addition to the grain size effects, the presence of a ductile Tix Aly intermetallic distributed in the grain boundaries plays an important role in the enhancement of the ultimate compressive and macroshear stresses for Ti3Al0.8Sn0.2C2. SEM observations reveal that these two MAX phases exhibit crack deflections, intragranular fractures, kink band formation and delaminations, grain push‐in and pull‐out.