Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, Food Additives and Contaminants: Part A: Chemistry, Analysis, Control, Exposure and Risk Assessment, 9(29), p. 1436-1442, 2012

DOI: 10.1080/19440049.2012.698397

Links

Tools

Export citation

Search in Google Scholar

Trichothecenes and zearalenone production byFusarium equisetiandFusarium semitectumspecies isolated from Argentinean soybean

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fusarium equiseti and Fusarium semitectum represent the most abundant species in the Fusarium complex isolated from flowers, soybean pods and seeds in Argentina. The aim of the present study was to assess the production of major type A and type B trichothecenes (diacetoxyscirpenol, neosolaniol, T-2 toxin and HT-2 toxin, nivalenol, deoxynivalenol) and zearalenone by 40 F. equiseti and 22 F. semitectum isolates on rice culture. Mycotoxins were determined by HPLC with fluorescence detection after derivatisation with 1-anthronylnitrile for type A trichothecenes (i.e. diacetoxyscirpenol, neosolaniol, T-2 toxin and HT-2 toxin), by HPLC with UV detection for type B trichothecenes (i.e. nivalenol and deoxynivalenol), and by TLC for zearalenone. A total of 22 of 40 F. equiseti isolates produced diacetoxyscirpenol, nivalenol and ZEA alone or in combination, whereas only two of 20 F. semitectum isolates were nivalenol and ZEA producers. Both Fusarium species did not produce any deoxynivalenol, neosolaniol, T-2 toxin and HT-2 toxin. The variable retention in toxigenicity displayed by both fungal species suggests that these species have a saprophytic lifestyle in the soybean agroecosystem in Argentina.