Published in

American Society for Microbiology, Clinical and Vaccine Immunology, 1(16), p. 122-126, 2009

DOI: 10.1128/cvi.00359-08

Links

Tools

Export citation

Search in Google Scholar

Early Pulmonary Cytokine and Chemokine Responses in Mice Immunized with Three Different Vaccines against Mycobacterium tuberculosis Determined by PCR Array

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In this study, the early pulmonary cytokine and chemokine responses in mice immunized with either BCG vaccine, a DeltasecA2 mutant of Mycobacterium tuberculosis, or a DNA vaccine expressing an ESAT6-antigen 85B fusion protein and then aerogenically challenged with a low dose of M. tuberculosis were evaluated by PCR array. The cellular immune responses at day 10 postchallenge were essentially equivalent in the lungs of mice immunized with either the highly immunogenic BCG vaccine or the DeltasecA2 M. tuberculosis mutant strain. Specifically, 12 immune biomolecules (including gamma interferon [IFN-gamma], interleukin-21 [IL-21], IL-27, IL-17f, CXCL9, CXCL10, and CXCL11) were differentially regulated, relative to the levels for naïve controls, in the lungs of vaccinated mice at this time point. Although the vaccine-related immune responses evoked in mice immunized with the DNA vaccine were relatively limited at 10 days postinfection, upregulation of IFN-gamma RNA synthesis as well as increased expression levels of CXCL9, CXCL10, and CXCL11 chemokines were detected.