Wiley, New Phytologist, 2(149), p. 265-274, 2001
DOI: 10.1046/j.1469-8137.2001.00015.x
Full text: Download
Abstract • Changes in the growth and yield of field-grown potato (Solanum tuberosum cv. Bintje) induced by season-long elevated CO2 and/or ozone concentrations are reported. • Open-top chambers and unchambered field plots were used to examine crop responses to three CO2 (ambient, 550 and 680 µmol mol−1) and two ozone (ambient and 65 nmol mol−1, 8 h d−1 seasonal mean) treatments applied throughout the 105 d growing season. • Elevated CO2 increased both above- and below-ground biomass at intermediate and final harvests. Tuber yield at final harvest was increased by c. 40% due to an increase in mean tuber weight rather than tuber number; tuber yield did not differ significantly between the 550 and 680 µmol mol−1 CO2 treatments. Elevated ozone had no significant effect on growth or yield except for the largest size category of tubers, despite extensive visible foliar injury. Significant CO2 × ozone interactions were detected only for senescent leaf number and green leaf ratio. • Elevated CO2 increases biomass and tuber yield in S. tuberosum cv. Bintje even at high ozone concentrations; these findings are discussed in relation to predicted future atmospheric changes.