Published in

The Company of Biologists, Journal of Cell Science, 18(125), p. 4413-4413, 2012

DOI: 10.1242/jcs.120816

The Company of Biologists, Journal of Cell Science, 2012

DOI: 10.1242/jcs.090134

Links

Tools

Export citation

Search in Google Scholar

Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Caveolin-1 (Cav1)/caveolae biology is intimately linked to actin dynamics and adhesion receptors. Caveolar domains are organized in hierarchical levels of complexity from curved or flatten caveolae to large, higher-order caveolar rosettes. We report that stress fibers controlled by Abl kinases and mDia1 determine the level of caveolar domain organization, which conditions the subsequent inward trafficking of caveolar domains induced upon loss of cell adhesion from the extracellular matrix. Abl-deficient cells show decreased content of stress fibers, a smaller stress-fiber co-aligned Cav1 pool and increased clustering of Cav1/caveolae at the cell surface. Defective caveolar linkage to stress fibers prevents the formation of big caveolar rosettes upon loss of cell adhesion, correlating with a lack of inward trafficking. Live imaging of stress fibers and Cav1 showed that the actin-linked Cav1 pool loses its spatial organization in the absence of actin polymerization and is dragged and clustered by depolymerizing filaments. We identify mDia1 as the actin polymerization regulator downstream of Abl kinases that controls the stress fiber-linked Cav1 pool. mDia1 knockdown results in Cav1/caveolae clustering and defective inward trafficking upon loss of cell adhesion. In contrast, cell elongation imposed by the excess of stress fibers induced by active mDia1 flattens caveolae. Furthermore, active mDia1 rescues the actin co-aligned Cav1 pool and Cav1 inward trafficking upon loss of adhesion in Abl-deficient cells. Thus, caveolar domain organization and trafficking are tightly coupled to adhesive and stress fiber regulatory pathways.