Published in

American Association of Immunologists, The Journal of Immunology, 3(160), p. 1393-1401, 1998

DOI: 10.4049/jimmunol.160.3.1393

Links

Tools

Export citation

Search in Google Scholar

Activation of Protein Kinase C-ζ and Phosphatidylinositol 3′-Kinase and Promotion of Macrophage Differentiation by Insulin-Like Growth Factor-I

Journal article published in 1998 by Qiang Liu, Wei Ning, Robert Dantzer ORCID, Gregory G. Freund, Keith W. Kelley
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phosphoinositides that are phosphorylated at the D3 position have been reported to activate an atypical, Ca2-independent protein kinase C (PKC) isoform designated PKC-zeta, and overexpression of this enzyme leads to monocytic differentiation. In this study, we cultured human HL-60 promyeloid cells with vitamin D3 and insulin-like growth factor-I (IGF-I), a 70-amino-acid peptide that activates phosphatidylinositol 3'-kinase (PI 3-kinase) in murine promyeloid cells. Two days later, the proportion of cells differentiating into macrophages in serum-free medium, as assessed by expression of the alpha-subunit of the beta2 integrin CD11b, increased from 5 +/- 1% to 25 +/- 3%. Addition of IGF-I increased the proportion of cells differentiating into CD11b-positive macrophages to 78 +/- 5%. In the absence of vitamin D3, IGF-I did not induce expression of CD11b (6 +/- 1%). The IGF-I-promoted macrophage differentiation was blocked specifically by preincubation of HL-60 cells with a mAb (alphaIR3) directed against the IGF type I receptor. Similarly, pretreatment of cells with either alphaIR3 or an IGF-binding protein, IGFBP-3, led to a 75% inhibition of CD11b expression when cells were cultured with vitamin D3 in serum-containing medium. IGF-I, but not vitamin D3, caused a sevenfold increase in the enzymatic activity of both PI 3-kinase and atypical PKC-zeta. Inhibition of IGF-I-inducible PI 3-kinase with either wortmannin or LY294002 abrogated the IGF-I-induced activation of PKC-zeta and totally blocked the enhancement in macrophage differentiation caused by IGF-I. These data establish that PKC-zeta is a putative downstream target of PI 3-kinase that is activated during IGF-I-promoted macrophage differentiation.