Published in

Wiley, Protein Science, p. NA-NA, 2008

DOI: 10.1002/pro.26

Links

Tools

Export citation

Search in Google Scholar

Monitoring anthrax toxin receptor dissociation from the protective antigen by NMR

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The binding of the Bacillus anthracis protective antigen (PA) to the host cell receptor is the first step toward the formation of the anthrax toxin, a tripartite set of proteins that include the enzymatic moieties edema factor (EF), and lethal factor (LF). PA is cleaved by a furin-like protease on the cell surface followed by the formation of a donut-shaped heptameric prepore. The prepore undergoes a major structural transition at acidic pH that results in the formation of a membrane spanning pore, an event which is dictated by interactions with the receptor and necessary for entry of EF and LF into the cell. We provide direct evidence using 1-dimensional (13)C-edited (1)H NMR that low pH induces dissociation of the Von-Willebrand factor A domain of the receptor capillary morphogenesis protein 2 (CMG2) from the prepore, but not the monomeric full length PA. Receptor dissociation is also observed using a carbon-13 labeled, 2-fluorohistidine labeled CMG2, consistent with studies showing that protonation of His-121 in CMG2 is not a mechanism for receptor release. Dissociation is likely caused by the structural transition upon formation of a pore from the prepore state rather than protonation of residues at the receptor PA or prepore interface.