Published in

American Chemical Society, ACS Catalysis, 3(4), p. 1004-1009, 2014

DOI: 10.1021/cs401115s

Links

Tools

Export citation

Search in Google Scholar

Optical Control of Enzyme Enantioselectivity in Solid Phase

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A lipase was immobilized on transparent agarose microspheres and genetically engineered to specifically anchor photochromic molecules into its catalytic site. Several combinations of azobenzene and spiropyran groups were conjugated to cysteines introduced at different positions near the active center. Light modulated the catalytic properties of the resulting solid bioconjugates, and such modulation depended on both the nature of the photochromic compound and the anchoring position. Covalent anchoring of azobenzene derivatives to the residue 295 of the lipase 2 from Bacillus thermocathenolatus triggered lipase preference for the S isomer under UV light, whereas visible light promoted preference for the R isomer. Molecular dynamics simulations indicate that conjugating photochromic compounds into the catalytic cavity allows manipulating the steric hindrance and binding energy of the substrates, leading to an enantioselective molecular fit in certain cases. Using this approach, we report for the first time the control of enzyme properties using light in the solid phase.