Published in

BioScientifica, Reproduction, 1(78), p. 37-47, 1986

DOI: 10.1530/jrf.0.0780037

Links

Tools

Export citation

Search in Google Scholar

Urogenital vasculature and local steroid concentrations in the uterine branch of the ovarian vein of the female tammar wallaby (Macropus eugenii)

Journal article published in 1986 by P. A. Towers, G. Shaw ORCID, M. B. Renfree
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The urogenital vasculature of the tammar comprises 4 major paired arteries and veins: the ovarian, the cranial urogenital, the caudal urogenital and the internal pudendal artery and vein. The ovarian artery and vein and their uterine branches which supply the ovary, oviduct and uterus, ramify extensively. Each anterior urogenital artery and vein supplies the caudal regions of the ipsilateral uterus, lateral and median vagina and cranial parts of the urogenital sinus. The caudal urogenital arteries and veins supply the urogenital sinus and caudal regions of the bladder. The internal pudendal artery and vein vascularize the cloacal region, with some anastomoses with branches of the external pudendal vessels. Anastomoses connect the uterine branch of the ovarian artery with the uterine branch of the cranial urogenital and cranial branches of the caudal urogenital arteries, and connect the caudal urogenital and the internal pudendal arteries. Anastomotic connections between the left and right arterial supply also occur across the midline of the cervical regions of the uteri and the anterior lateral vaginae. Similar connections are seen in the venous system. The uterine branch of the ovarian artery ramifies extensively very close to the ovary, giving a plexiform arrangement with the ovarian veins, and also with the uterine venous system on the lateral side of each uterus. This plexiform structure provides an anatomical arrangement which could allow a local transfer of ovarian hormones from ovarian vein into the uterine arterial supply, and thence to the ipsilateral uterus. Progesterone concentrations in plasma from the mesometrial side of the uterine branch of the ovarian vein are markedly higher than in tail vein plasma, especially during the 'Day 5 peak' early in pregnancy, and also at full term. There is also a marked decrease in progesterone concentration from all sites immediately before birth as previously reported for peripheral plasma. These results support the suggestion of a countercurrent transfer mechanism, at least for progesterone, and possibly other hormones, between the ovarian vein and uterine artery. Such a local transfer could explain the different morphological responses of the endometria of the two adjacent uteri during pregnancy in macropodid marsupial species.