Elsevier, Powder Technology, (284), p. 336-343
DOI: 10.1016/j.powtec.2015.06.073
Full text: Download
The accuracy of soft computing technique was employed to predict the performance of micro- and nano-sized particle erosion in a 3-D 90° elbow. The process, capable of simulating the total and maximum erosion rate with adaptive neuro-fuzzy inference system (ANFIS), was constructed. The developed ANFIS network was with three neurons in the input layer, and one neuron in the output layer. The inputs included particle velocity, particle diameter, and volume fraction of the copper particles. The size of these particles was selected in the range of 10nm to 100μm. Numerical simulations have been performed with velocities ranging from 5 to 20m/s and for volume fractions of up to 4%. The governing differential equations have been discretized by the finite volume method for ANFIS training data extraction. The ANFIS results were compared with the CFD results using root-mean-square error (RMSE) and coefficient of determination (R2). The CFD results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ANFIS approach. The following characteristics were obtained: ANFIS model can be used to forecast the maximum and total erosion rate with high reliability and therefore can be applied for practical purposes.