Published in

Oxford University Press, Endocrinology, 3(150), p. 1269-1277, 2008

DOI: 10.1210/en.2008-1055

Links

Tools

Export citation

Search in Google Scholar

Decreased p44/42 Mitogen-Activated Protein Kinase Phosphorylation in Gender- or Hormone-Related But Not during Age-Related Adrenal Gland Growth in Mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Postnatal growth of the mouse adrenal gland shows a characteristic gender-dependent pattern, resulting in an almost 2-fold higher adrenal weight in 11-wk-old female vs. male mice. We demonstrated that the higher weight of the adrenal glands in female mice is due to a significantly (P < 0.05) increased growth rate in female mice and a shorter growth phase of the adrenal glands in male mice (P < 0.05). To address the signaling mechanisms underlying these differential growth patterns, we evaluated the phosphorylation levels of p44/42 and p38 MAPK. In female mice, age-dependent reductions of p38 MAPK phosphorylation were found between wk 3 and 9 (47% reduction; P < 0.05). At the age of 11 wk, the p38 MAPK phosphorylation level in female adrenal glands was about 60% lower than in the male counterparts (P < 0.01). Similarly, the phosphorylation level of p44/42 MAPK was 50% lower in female adrenal glands (P < 0.001). Reduced activation of p44/42 MAPK was also observed after growth stimulation of the adrenal glands in male mice after ACTH treatment (-36%; P < 0.001) or by expression of a GH transgene (-34%; P < 0.001), whereas p38 MAPK, JNK, or PDK1 activation was unaffected. From our findings in three independent mouse models where partial deactivation of p44/42 MAPK was observed under conditions of elevated growth, we suggest a function of p44/42 MAPK for adrenal growth and a role of p44/42 MAPK for the integration of different endocrine stimuli.