Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 36(113), p. 12243-12256, 2009

DOI: 10.1021/jp903475z

Links

Tools

Export citation

Search in Google Scholar

Structure of high internal phase aqueous-in-oil emulsions and related inverse micelle solutions, 4 - surfactant mixtures.

Journal article published in 2009 by Pa Reynolds, Ep Gilbert ORCID, Mj Henderson, Jw White
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effects of combinations of surfactants on the structure and stability of high internal phase water-in-hexadecane and saturated ammonium nitrate-in-hexadecane oil-based emulsions and oil-based inverse micellar solutions are reported, The combinations were 750, 1200, and 1700 molecular weight monodisperse and 450 and 1000 molecular weight polydisperse polyisobutylene acid amides, and sorbitan monooleate. The samples made from mixtures have qualitatively similar nanostructures to emulsions made from single surfactants. Again, for the emulsions, micrometer-scale aqueous droplets are dispersed in a continuous oil phase, which contains inverse spherical micelles composed of surfactant, hexadecane, and water. In quantitative terms, lower average surfactant molecular weight, lower ammonium nitrate content, and lower surfactant content increased the swelling of micelles, their water content, and the tendency of the emulsion to be unstable and form a sponge phase. This instability also allows micelle plasticity such that their geometry and content in mixed surfactant systems are not simply predictable by interpolation from single surfactant systems. An example was found of a mixed micelle 3 times larger than either single component micelle. The observed behavior suggests that mixing surfactant molecules of very different molecular weights destabilizes the emulsions, while mixing surfactants close in molecular weight has the opposite effect. The synergistic effects of surfactant molecular weight polydispersity and binary mixing are most marked for 1:1 molecular mixtures of surfactant. © 2009, American Chemical Society