Published in

University of the Basque Country Press (UBC Press), The International Journal of Developmental Biology, 5-6(52), p. 473-480

DOI: 10.1387/ijdb.082583bg

Links

Tools

Export citation

Search in Google Scholar

Sperm head membrane reorganisation during capacitation

Journal article published in 2008 by Bart M. Gadella, Pei-Shiue Tsai ORCID, Arjen Boerke, Ian A. Brewis
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The sperm cell has a characteristic polarized morphology and its surface is also highly differentiated into different membrane domains. Junctional protein ring structures seal the surface of the mid-piece from the head and the tail respectively and probably prevent random diffusion of membrane molecules over the protein rings. Despite the absence of such lateral diffusion-preventing structures, the sperm head surface is also highly heterogeneous. Furthermore, lipid and membrane protein ordering is subjected to changes when sperm become capacitated. The forces that maintain the lateral polarity of membrane molecules over the sperm surface, as well as those that cause their dynamic redistribution, are only poorly understood. Nevertheless, it is known that each of the sperm head surface regions has specific roles to allow sperm to fertilize the oocyte: a specific region is devoted to zona pellucida binding, a larger area of the sperm head surface is involved in the acrosome reaction (intracellular fusion), while yet another region is involved in egg plasma membrane binding and fertilization fusion (intercellular membrane fusion). All three events occur in the area of the sperm head where the plasma membrane covers the acrosome. Recently, lipid ordered microdomains (lipid rafts) were discovered in membranes of many biological specimens including sperm. In this review, we cover the latest insights about sperm lipid raft research and discuss how sperm lipid raft dynamics may relate to sperm-zona binding and the zona-induced acrosome reaction.