Published in

Oxford University Press (OUP), Brain, 12(131), p. 3201-3208

DOI: 10.1093/brain/awn268

Links

Tools

Export citation

Search in Google Scholar

Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Survivors of preterm birth have a high incidence of neurodevelopmental impairment which is not explained by currently understood brain abnormalities. The aim of this study was to test the hypothesis that the neurodevelopmental abilities of 2-year-old children who were born preterm and who had no evidence of focal abnormality on conventional MR imaging were consistently linearly related to specific local changes in white matter microstructure. We studied 33 children, born at a median (range) gestational age of 28(+5) (24(+4)-32(+1)) weeks. The children were recruited as infants from the Neonatal Intensive Care Unit at Queen Charlotte's and Hammersmith Hospital in the early neonatal period and imaged at a median corrected age of 25.5 (24-27) months. The children underwent diffusion tensor imaging to measure fractional anisotropy (FA) as a measure of tissue microstructure, and neurodevelopmental assessment using the Griffiths Mental Development Scales [giving an overall developmental quotient (DQ) and sub-quotients scores for motor, personal-social, hearing-language, eye-hand coordination and performance scales] at 2 years corrected age. Tract-based spatial statistics with linear regression analysis of voxel-wise cross-subject statistics were used to assess the relationship between FA and DQ/sub-quotient scores and results confirmed by reduced major axis regression of regions with significant correlations. We found that DQ was linearly related to FA values in parts of the corpus callosum; performance sub-scores to FA values in the corpus callosum and right cingulum; and eye-hand coordination sub-scores to FA values in the cingulum, fornix, anterior commissure, corpus callosum and right uncinate fasciculus. This study shows that specific neurodevelopmental impairments in infants born preterm are precisely related to microstructural abnormalities in particular regions of cerebral white matter which are consistent between individuals. FA may aid prognostication and provide a biomarker for therapeutic or mechanistic studies of preterm brain injury.