Published in

American Chemical Society, Environmental Science and Technology, 5(41), p. 1554-1559, 2007

DOI: 10.1021/es0620484

Links

Tools

Export citation

Search in Google Scholar

Spatial Distribution of Perfluoroalkyl Contaminants in Lake Trout from the Great Lakes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Individual whole body homogenates of 4 year old lake trout (Salvelinus namaycush) samples collected in 2001 from each of the Great Lakes were extracted using a novel fluorophilicity cleanup step and analyzed for perfluoroalkyl compounds (PFCs). Standard addition and internal standardization were used for quantification. Results were reported (+/- SE) for perfluorinated carboxylates (PFCAs), perfluorinated sulfonates (PFSAs), and unsaturated fluorotelomer carboxylates (8:2 and 10:2 FTUCA). The lowest average concentration of sigmaPFC was found in samples from Lake Superior (13+/-1 ng g(-1)), while the highest average concentration was found in samples from Lake Erie (152+/-14 ng g(-1)). Samples from Lake Ontario (60+/-5 ng g(-1)) and Lake Huron (58 +/-10 ng g(-1)) showed similar average sigmaPFC concentrations, although the perfluorinated sulfonate/carboxylate ratios were different. The major perfluoroalkyl contaminant observed was perfluorooctane sulfonate (PFOS) with the highest concentration found in samples from Lake Erie (121+/-14 ng g(-1)), followed by samples from Lake Ontario (46+/-5 ng g(-1)), Lake Huron (39 +/-10 ng g(-1)), Lake Michigan (16+/-3 ng g(-1)), and Lake Superior (5+/-1 ng g(-1)). Perfluorodecane sulfonate (PFDS) was detected in 89% of the samples, with the highest concentration in Lake Erie samples (9.8+/-1.6 ng g(-1)), and lowest concentration in samples from Lake Superior (0.7 +/- 0.1 ng g(-1)). Statistically significant correlations were observed between PFOS and PFDS concentrations, and PFOS concentration and body weight, respectively. The PFCAs were detected in all samples, with the highest total average concentration in samples from Lake Erie (19 ng g(-1)), followed by samples from Lake Huron (16 ng g(-1)), Lake Ontario (10 ng g(-1)), Lake Michigan (9 ng g(-1)) and Lake Superior (7 ng g(-1)). The compounds with significant contributions to the sigmaPFCA concentrations were PFOA and C9-C13-PFCAs. The 8:2 FTUCA was detected at concentrations ranging between 0.1 and 0.2 ng g-1, with the highest level in samples showing also elevated concentrations of PFOA (4.4 ng g(-1) for Lake Michigan vs 1.5 ng g(-1) for all other samples). The 10:2 FTUCA was detected only in 9% of all samples (nd, 45 pg g(-1)). For those PFCs where we determined lake water concentrations, the highest log BAFs were calculated for PFOS (4.1), PFDA (3.9), and PFOSA (3.8).