Published in

American Chemical Society, ACS Nano, 4(5), p. 3085-3095, 2011

DOI: 10.1021/nn200211c

Links

Tools

Export citation

Search in Google Scholar

Side-Chain Liquid Crystalline Polymer Networks: Exploiting Nanoscale Smectic Polymorphism To Design Shape-Memory Polymers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Herein, we investigate the influence of nanoscale smectic polymorphism within end-on fixed side-chain liquid crystalline polymer networks (SCLCNs) on macroscopic shape-memory and actuation properties. We have synthesized a series of SCLC-type linear (TP-n) and cross-linked random terpolymers (XL-TP-n) with varying length of flexible methylene spacers (n = 5, 10, and 15) between polynorbornene main-chain and cholesteryl ester side-chains. Thermal and mechanical analyses by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirm a glass transition (T(g)), a clearing temperature (T(cl)), and a network structure in the XL-TP-n. Detailed structural investigation conducted using wide-angle and small-angle X-ray scattering (WAXS and SAXS) at room temperature proves self-assembled smectic A (SmA) polymorphism of the XL-TP-n which evolves from non-interdigitated bilayer (SmA(2)) for n = 5 to mixed layers of monolayer-like highly interdigitated layer (SmA(1)) and SmA(2) for n = 10 and to SmA(1) for n = 15. In addition, TP10 at temperatures above 60 °C interestingly shows transformation of SmA structure from mixed layer (SmA(1) + SmA(2)) to interdigitated structure (SmA(d)). The SmA polymorphism developed in TP-n during shape-memory cycles (SMCs) significantly impacts the ultimate strain responses. A mechanism for the unique interdigitation-based thermostrictive behavior is proposed. More importantly, this new actuation mechanism observed in these XL-TP-n can be exploited to develop intelligent thermal actuators.