Published in

Trans Tech Publications, Key Engineering Materials, (587), p. 27-32, 2013

DOI: 10.4028/www.scientific.net/kem.587.27

Links

Tools

Export citation

Search in Google Scholar

Influence of the Precipitation Temperature on Properties of Nanohydroxyapatite Powder for the Fabrication of Highly Porous Bone Scaffolds

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aim of the present work is to study the influence of the precipitation temperature in the synthesis of nanohydroxyapatite (n-HAp) on the properties of the resulting n-HAp powder for the fabrication of highly porous scaffolds for bone tissue engineering. The n-HAp powder was obtained by a wet precipitation technique starting from calcium nitrate tetrahydrate (Ca (NO3)2*4H2O) and phosphoric acid (H3PO4) at different temperatures: 10°C, 37°C and 50°C. Highly porous scaffolds were fabricated using the three different powders by the sponge replica method and sintering at 1300°C. Combined X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses on powders indicated that on increasing the precipitation temperature the formation of pure n-HAp is accelerated, without significant changes in particles morphology and size. Scaffolds characterized by high porosity (89%) and good compressive strength (0.53 MPa for n-HAp prepared at 37°C) were obtained. XRD analyses on sintered n-HAp confirmed the thermal stability of the material. Therefore, the as-synthesized n-HAp powder can be successfully used for the fabrication of highly porous scaffolds as bone substitutes.