Links

Tools

Export citation

Search in Google Scholar

Effects of sewage discharge on abundance and biomass of meiofauna

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

In order to elucidate the effects of sewage discharge on abundance and biomass of meio- fauna, a seasonal survey was carried out on meiofauna at stations with different distances to a sewage outlet in the middle intertidal zone of No. 1 bathing beach in Huiquan Bay, Qingdao in spring (April), summer (August), autumn (October) and winter (December), 2011. The results showed that the annual average meiofaunal abundance was (1859.9 ± 705.1) ind · 10 cm(-2), with higher values of (2444.9 ± 1220.5) ind · 10 cm(-2) at Station S2 (20 m to the sewage outlet) and (2492.2 ± 1839.9) ind · 10 cm(-2) at Station S3 (40 m to the sewage outlet), while the lowest value of (327.9 ± 183.2) ind · 10 cm(-2) was observed at Station S1 (0 m to the sewage outlet) in terms of horizontal distribution. The annual average biomass was (1513.4 ± 372.7) μg · 10 cm(-2). Meiofaunal abundance and biomass varied seasonally with the highest values in spring and the lowest values in summer. A total of 11 meiofaunal groups were identified, including nematodes, copepods, polychaetes, oligochaetes, tardigrades, halacaroideans, planarians, ostracods, isopods, crustacean nauplii and others. Free-living marine nematodes were the dominant group constituting 83. 1% of the total abundance, followed by benthic copepods, accounting for 12. 8% of the total abundance. In terms of vertical distribution, most of the meiofauna concentrated in the top 0-2 cm, and the meiofauna abundance decreased with increasing the sediment depth. Meiofauna was also noted to migrate deeper into the sediment in the winter. Pearson correlation analysis showed that meiofaunal abundance and biomass had highly significant negative correlations with sediment median particle diameter and organic matter content. In addition, tourism-induced activities affected meiofaunal abundance and distribution. A comparison with historical data from similar studies was carried out, and the applicability of the ratio of abundance of nematodes to copepods in monitoring organic pollution was discussed.