Published in

Lippincott, Williams & Wilkins, Applied Immunohistochemistry & Molecular Morphology, 3(19), p. 273-278, 2011

DOI: 10.1097/pai.0b013e3182008c29

Links

Tools

Export citation

Search in Google Scholar

Rapid Histochemistry Using Slow Off-rate Modified Aptamers With Anionic Competition

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Immunohistochemistry is used in both research and clinical settings to identify proteins in tissue samples. Despite the power and versatility of immunohistochemistry, limitations are imposed by the slow diffusion of antibodies through tissue and the need for secondary staining or signal amplification. Aptamers can circumvent these limitations, but their application has been hindered by nonspecific binding to cellular components, particularly in the nucleus. Here we describe unique slow off-rate modified aptamers that facilitate rapid and selective binding to target proteins in tissue. Specifically, we have developed a fluorescent aptamer that binds to the human epidermal growth factor receptor 2 (HER2) in breast carcinomas quickly and specifically, and we have shown that the slow off-rate of the aptamer from the HER2 protein contributes to its selectivity. These findings open the door to aptamer histochemistry applications in both research and clinical settings, including intraoperative diagnostics in which speed and accuracy are paramount.