Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Sensors and Actuators B: Chemical, 2(140), p. 597-602

DOI: 10.1016/j.snb.2009.05.004

Links

Tools

Export citation

Search in Google Scholar

Thermodynamic analysis of the interaction between 3-aminophenylboronic acid and monosaccharides for development of biosensor

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The special interaction between 3-aminophenylboronic acid and monosaccharides, particularly glucose, fructose and galactose, has been investigated and used for the development of electrochemical and surface plasmon resonance (SPR) based saccharide sensors. The binding constants and thermodynamic parameters of interaction such as free energy of binding (ΔG), enthalpy (ΔH) and entropy (ΔS) were determined for the first time using isothermal titration calorimetry revealed the enthalpic and entropic contributions to the free energies of binding. Effects of pH and buffer on the binding constants (k) between 3-aminophenylboronic acid and monosaccharides were also examined. The binding constant of fructose was found to be six times higher than glucose and four times higher than galactose at pH 11, leading the specific detection of fructose. SPR and potentiometric calibration for fructose were linear in the concentration range of 10–120 mM and 8–84 mM, respectively. Limit of detection of the SPR and potentiometric method were found to be as 8.9 mM and 1.4 mM, respectively.