Published in

Elsevier, Marine and Petroleum Geology, (54), p. 23-36, 2014

DOI: 10.1016/j.marpetgeo.2014.02.010

Links

Tools

Export citation

Search in Google Scholar

Impact of the Late Triassic Dashtak intermediate detachment horizon on anticline geometry in the Central Frontal Fars, SE Zagros Fold Belt, Iran

Journal article published in 2014 by Mahdi Najafi, Ali Yassaghi, Abbas Bahroudi, Jaume Vergés ORCID, Shahram Sherkati
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Integration of 2-D seismic lines, well data and field studies allow us to determine the geometry variations of anticlines in the highly prolific Central Frontal Fars region in the SE Zagros fold belt. These variations are directly related to changes in thickness of the principal evaporitic intermediate detachment level, located along the Late Triassic Dashtak Formation. Anticlines of short wavelength contain a significant over-thickening of the evaporitic detachment level in their crestal domain that may reach 1900 m (from an original thickness of 550-800 m). Folds containing thick Dashtak evaporites show decoupling across the detachment level and, thus, a shift of the anticline crest in the underlying Permo-Triassic carbonates of the Dehram Group, which form the major gas reservoir in the Central Frontal Fars. Four main parameters control the extent and distribution of the decoupled anticlines in the study area: (a) original large thickness of the Late Triassic evaporitic basin; (b) coinciding larger amounts of anhydrites with increasing total thickness of formation; (c) parallel occurrences of abnormally high fluid pressures; and (d) shortening variations across, and along, the strike of specific folds. The present work relating the different parameters of the Dashtak evaporites with the anticline geometry allows a better understanding of the fold geometry variations with depth, which is applicable to oil and gas exploration in the SE Zagros and other similar hydrocarbon provinces characterised by intermediate detachment horizons.